
Journal of Computational Physics 222 (2007) 849–871

www.elsevier.com/locate/jcp
CIP/multi-moment finite volume method for Euler equations:
A semi-Lagrangian characteristic formulation

S. Ii, F. Xiao *

Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Received 3 April 2006; received in revised form 27 July 2006; accepted 21 August 2006
Available online 10 October 2006
Abstract

An accurate algorithm for the hyperbolic equations has been proposed by combining the constrained interpolation pro-

file/multi-moment finite volume method (CIP/MM FVM) with the characteristic theory. Two types of moments, i.e. the
point value (PV) at cell boundary of each mesh element and the volume-integrated average (VIA) over each mesh cell
of a physical field, are treated as the model variables and updated independently in time. The interpolation that uses both
PV and VIA is reconstructed for each Riemann invariant of the hyperbolic conservation laws. The PVs are then updated
by semi-Lagrangian schemes along the characteristic curves, while the VIAs are computed by formulations of flux form,
where the numerical fluxes are evaluated by averaging the physical fields over the characteristic curves. The Runge–Kutta
type schemes are used for integrating the trajectory equations based on the characteristic speeds to improve the accuracy in
time.

The numerical procedure for the one-dimensional Euler conservation laws is described in detail in this paper. Number
of benchmark tests are presented. The numerical results show that the present method is accurate and competitive to other
existing methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many high resolution finite volume schemes have been so far developed for the Euler conservation laws
that have direct applications in aerodynamic engineering. A finite volume method (FVM) is cast in a flux form
and thus guarantees the numerical conservation which is found to be essential to capturing shock waves with
correct position. In a conventional finite volume method, the discretized model variable of physical field is usu-
ally defined as the volume-integrated average (VIA), or cell-integrated average, over the control volume. The
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numerical flux on each control volume boundary is approximated by an interpolation reconstruction based on
the VIA for each physical field. A high resolution scheme requires the reconstruction to be built in such a way
so that the numerical solution has an accuracy higher than second-order for the smooth region, but does not
produce significant numerical oscillations in the presence of the discontinuities. Representative schemes of this
category are the monotone upwind scheme for conservation laws (MUSCL) [21], the total variation diminish-
ing (TVD) [6], the piecewise parabolic method (PPM) [1], the piecewise rational method (PRM) [35], the essen-
tially non-oscillatory (ENO) [7,17,18], and the weighted ENO (WENO) [11,9]. In these methods, only the VIA
is used as the model variable which is stored and predicted in time. Thus, a high order reconstruction needs a
wide stencil of computation grid, which makes the extension of such a method to unstructured grid not a easy
task.

Different from the above-mentioned conventional conservative high resolution schemes, where only the
VIA of each physical field is treated as the model variable to be put forward in time, the discontinuous Galer-
kin (DG) method [2–5] makes use of some extra moments in addition to the VIA-equivalent quantity as the
model variables too. The VIA-equivalent moment in a DG method is effectively updated through a finite vol-
ume formulation of flux form, and therefore is numerically conserved. A high-order reconstruction can be
built with high-order basis functions in a DG method by increasing the local degrees of freedom (DOF) within
each control volume (mesh element). Each moment (or DOF) in a DG method has its own evolutionary gov-
erning equation derived from the Galerkin formulation, which involves numerical quadratures. Another way
to increase local DOF is found in the spectral finite volume (SV) method [23–26], where each mesh cell or spec-
tral volume (SV) is subdivided into smaller regions, namely control volumes (CVs). The VIA of physical field
is then defined over each CV and updated separately in time. So, high-order polynomials can be piecewisely
constructed over each SV, and the Riemann problems among the CV of the same SV can be solved exactly. A
recent study [23], however, showed that more restrictive CFL condition for computational stability is required
for higher order approximations of either DG or SV method.

An alternative to increase the local DOF is found in the constrained interpolation profile (CIP) method
[36,38], where more than two types of moments, i.e. the point value (PV) and the first-order derivatives
(DV) are simultaneously treated as the model variables and predicted independently in time. Successive studies
have resulted in a class of conservative schemes [20,37,28,29], so called CIP-conservative semi-Lagrangian
(CIP-CSL) methods, for the scalar conservative advection transport. In a CIP-CSL scheme, a moment of
VIA is introduced as a new model variable that is updated by a flux-form formulation and exactly conserved.
More recently, a more general finite volume framework, the CIP/multi-moment finite volume method (CIP/
MM FVM), has been proposed and implemented to various fluid dynamic simulations [30–34]. Using multi-
moment, a CIP/MM FVM can construct the high-order interpolation function on a local base, which makes
the implementation of the method on unstructured mesh much easier. We, for example, have devised a fourth-
order and single-cell based advection scheme on triangular unstructured mesh [8].

A similar multi-moment concept has been used in the Hermite WENO (HWENO) scheme [12] that makes
the stencil much more compact than the conventional WENO scheme. In general, making use of multi-
moments enables one to reconstruct high-order interpolation function with local stencil.

In the CIP/MM FVM, the way to update the moment is more ‘physically motivated’ and more flexible. In
regard to the hyperbolic conservation systems, for example, we compute the VIA (conservative moment)
through a flux-form formulation to achieve the numerical conservativeness, and update the PV (non-conser-
vative moment) by a semi-Lagrangian procedure. As shown in [8], a CIP/MM FVM works well even with a
larger CFL number. Concerning the computation of the Euler equations, a CIP/MM FVM has been devel-
oped by using a pressure projection [32,33]. The resulting algorithm conserves numerically the VIA of the con-
servative variables in the Euler equations, and works for all Mach numbers.

In this paper, we present another more accurate variant of the CIP/MM FVM to the one-dimensional invis-
cid Euler conservation laws by fully implementing the characteristic theory to the system. The semi-Lagrang-
ian solutions are solved in terms of the Riemann invariants along the characteristic curves, and used also to
evaluate the numerical fluxes for updating the VIAs of the conservative variables. It results in a robust and
accurate formulation for the Euler conservation laws.

In Section 2, we describe the CIP/MM FVM for the scalar conservation law, where the definition for the
moments, the CIP-CSL reconstructions and the way to update the moments are given in detail. The imple-
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mentation of the CIP/MM FVM to the one-dimensional Euler conservation laws is discussed in Section 3,
and the numerical experiments for the Euler conservation laws are shown in Section 4. We evaluated our
method with some typical benchmark tests. Finally, some discussions and conclusion remarks end the paper
in Section 5.
2. The scalar conservation laws

In this section, we describe the numerical formulation of the CIP/MM FVM for the scalar conservative
advection transport equation as follows:
o/
ot
þ oðu/Þ

ox
¼ 0; ð1Þ
where / is the transported field quantity and u is the velocity.
2.1. Moments definition

We solve (1) on one-dimensional domain divided into control volumes (mesh cells) [xi�1/2, xi+1/2];
(i = 1,2, . . ., I). Shown in Fig. 1, two kinds of moments are defined respectively for the field variable /(x, t) as

� the volume-integrated average (VIA) over each mesh cell
V /i ¼
1

Dxi

Z x
iþ1

2

x
i�1

2

/ðx; tÞdx; ð2Þ
where Dxi = xi+1/2 � xi�1/2, and
� the point value (PV) at cell boundary
P/iþ1
2
¼ / xiþ1

2
; t

� �
: ð3Þ
Several conservative CIP schemes [20,37,28,29], i.e. the CIP-CSL schemes, have been proposed to solve the
advection transport equation (1). In a CIP-CSL scheme, the VIA and PV of /(x, t) are simultaneously treated
as the model variables, and the interpolation functions are built up by using both VIA and PV. We show two
practical CIP-CSL reconstructions below.
2.2. The interpolation functions

2.2.1. CIP-CSL2 reconstruction [37]

Given one VIA V /i and two PVs P/i�1=2 over [xi�1/2, xi+1/2], we construct a piecewise quadratic interpola-
tion function for cell i,
UiðxÞ ¼ a2 x� xi�1
2

� �2

þ a1 x� xi�1
2

� �
þ a0: ð4Þ
From the constrained conditions
Fig. 1. The locations of the moments for the one-dimensional scalar equation on cell i.
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Ui xi�1
2

� �
¼ P/i�1

2
;

Ui xiþ1
2

� �
¼ P/iþ1

2
;

1

Dxi

Z x
iþ1

2

x
i�1

2

UðxÞdx ¼ V /i;

ð5Þ
we have the coefficients of (4) as
a0 ¼ P/i�1
2
;

a1 ¼
2 3V /i � P/iþ1

2
� 2P/i�1

2

� �
Dxi

;

a2 ¼
3 �2V /i þ P /iþ1

2
þ P/i�1

2

� �
Dx2

i
:

ð6Þ
2.2.2. CIP-CSL3 reconstruction [28]

In addition to (5), we include another parameter, the first-order derivative di at the cell center, and use the
following constrained conditions
Uiðxi�1
2
Þ ¼ P/i�1

2
;

Uiðxiþ1
2
Þ ¼ P/iþ1

2
;

1

Dxi

Z x
iþ1

2

x
i�1

2

UðxÞdx ¼ V /i;

dU
dx

����
x¼xi

¼ di:

ð7Þ
A piecewise cubic interpolation function is constructed over cell i as follows:
UiðxÞ ¼ a3 x� xi�1
2

� �3

þ a2 x� xi�1
2

� �2

þ a1 x� xi�1
2

� �
þ a0;
with
a0 ¼ P/i�1
2
;

a1 ¼
2ð3V /i � 3P/i�1

2
� DxidiÞ

Dxi
;

a2 ¼
3 �2V /i � P /iþ1

2
þ 3P/i�1

2
þ 2Dxidi

� �
Dx2

i
;

a3 ¼
4 P /iþ1

2
� P/i�1

2
� Dxidi

� �
Dx3

i

:

ð8Þ
The first-order derivative or gradient of the interpolation function di can be computed in terms of the
known moments, i.e. the PV and VIA. Shown later, the gradient di provides a possibility for us to modify
the interpolation function, thus to make the numerical solution to possess some properties desired. For
example, numerical oscillation can be effectively eliminated by simply implementing some existing slope lim-
iters (see [28] for details). We should also notify [14] for another way of reconstruction with a Hermite
interpolation.
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We give two approximations for di below.

� Second-order approximation
The second-order approximation for di is obtained by using cell boundary PVs P/i�1=2 of cell i,
di ¼
P/iþ1

2
� P/i�1

2

Dx
: ð9Þ
It is obvious that with the coefficient of the third-order term vanishing in (8), the cubic interpolation function
becomes a quadratic one. Thus, the CIP-CSL3 reconstruction degrades to the CIP-CSL2 reconstruction. So,
the CSL2 reconstruction can be effectively expressed as a special case of (8). Moreover, as shown later, recast-
ing the CSL2 reconstruction into (8) with the slope evaluated by (9), we are able to introduce a limiting pro-
jection to suppress the numerical oscillations in the original CIP-CSL2 scheme.
� Fourth-order approximation

The fourth-order approximation for di is obtained by using the VIAs V /i�1 and the boundary PVs P/i�1=2 of
two neighboring cells,
di ¼
�V /iþ1 þ 10P /iþ1

2
� 10P/i�1

2
þ V /i�1

8Dx
; ð10Þ
for uniform grid. Compared to the formula in [28], the stencil of the fourth-order approximation (10) is more
compact.

In this paper, we use the cubic polynomial (8) as the unified form of the interpolation function. The result-
ing reconstruction function is either a quadratic or a cubic polynomial with the slope parameter di approxi-
mated either by (9) or by (10).

As discussed in our previous papers, the introduction of the slope parameter di provides us a convenient
way to control both the numerical oscillation and diffusion. Next, we discuss a numerical switching using
the TVB concept to control di and the numerical oscillations hence.

2.2.3. Slope limiting

High-order reconstructions tend to cause Gibbs phenomena near a discontinuity. Some solution-dependent
switchings have to be devised to suppress the numerical oscillations in the presence of the discontinuity or
large jump. It is well known that the TVD [6] type schemes degrade to first-order not only at a discontinuity
but also at an extremum in the solution. Thus, less restrictive limitings must be considered if one desires higher
order schemes. For example, the total variation bounded (TVB) [15] concept works well with some recent
high-order schemes such as the DG and the SV methods. The TVB scheme maintains high-order accuracy
even at extrema, hence is able to give a globally high-order accuracy.

We adopt the TVB limiting to gradient di which is at first approximated by (9) or (10). The modified TVB-
minmod limiter [15] is written as
d�i ¼
di if jdij 6 MDx;

minmod di; di�1
2
; diþ1

2

� �
otherwise;

(
ð11Þ
where d�i is the limited gradient used for the interpolation function (8), and di±1/2 are the two gradients on cell
boundaries approximated in terms of the VIA moment by
di�1
2
¼

V /i � V /i�1

Dx
and diþ1

2
¼

V /iþ1 � V /i

Dx
:

The minmod limiter [6] is defined as
minmodða1; a2; a3Þ ¼
s �minðja1j; ja2j; ja3jÞ if s ¼ signða1Þ ¼ signða2Þ ¼ signða3Þ;
0 otherwise:

�

We compute M with the formula given in [2,3],
M ¼ 2

9
M2ð3þ 10M2Þ

Dx
Dxþ jdi�1

2
j þ jdiþ1

2
j ; ð12Þ
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where M2 means the maximum absolute value of the second-order derivative over the computational domain.
As the implementations in other methods, the optimal M2 in a TVB limiter is also somewhat case-dependent in
our applications.

2.3. Time integration with the Runge–Kutta method

Provided the numerical solutions at step n (t = tn) for both moments, V /n
i and P/n

iþ1=2, we consider the
numerical procedure to update the moments to step n + 1 (t = tn+1 = tn + Dt).

In a CIP-CSL scheme, computing the semi-Lagrangian solution to the PV moment involves a procedure to
find out the departure point for each cell boundary, which is the solution at tn+1 = tn + Dt to the initial value
problem,
dX
dt ¼ �uðX ; tÞ;
X ðt ¼ t0 ¼ tnÞ ¼ X 0 ¼ xiþ1

2
;

(
ð13Þ
for cell boundary point xi+1/2.
In this paper, we use the Runge–Kutta method to solve (13). The third-order TVD Runge–Kutta method

[16] reads as the following numerical steps for (13),
X 1 ¼ X 0 � uðX 0; t0ÞDt;

X 2 ¼
3

4
X 0 þ

1

4
X 1 �

1

4
uðX 1; t1ÞDt;

X 3 ¼
1

3
X 0 þ

2

3
X 2 �

2

3
uðX 2; t2ÞDt;

ð14Þ
or equivalently
X 1 ¼ X 0 � uðX 0; t0ÞDt;

X 2 ¼ X 0 �
1

4
ðuðX 0; t0Þ þ uðX 1; t1ÞÞDt;

X 3 ¼ X 0 �
1

6
ðuðX 0; t0Þ þ uðX 1; t1Þ þ 4uðX 2; t2ÞÞDt:

ð15Þ
From (1), we compute the PV according to the non-conservative form in which the flux is decomposed into an
advection part and a non-advection part,
d/
dt
¼ o/

ot
þ u

o/
ox
¼ �/

ou
ox
: ð16Þ
Considering the homogeneous part or the advection part in (16), we compute the PVs using the semi-Lagrang-
ian solution at each substep of the Runge–Kutta time integration (14) as
P/hli
iþ1

2

¼ UiðX lÞðX lÞ; ð17Þ
where l denotes the Runge–Kutta step, and l = 1,2,3 for the third-order Runge–Kutta method. The location
of the departure point Xl is the solution of (13) by the Runge–Kutta method, and UiðX lÞ is the piecewise
interpolation function constructed in terms of the moments at t = tn, over the mesh cell that the departure
point Xl falls in. The non-advection part in (16) is obtained by an integration along the trajectory s, and it

can be approximated by the summation bDiþ1=2 ¼ �Dt
Pl�1

l0¼0al0UiðX l0 ÞðX l0 Þ ou
ox ðX 0Þ, where al0 denotes the

Runge–Kutta weight coefficients. The PV at the cell boundary of step n + 1 is finally obtained as
P/nþ1

iþ1=2 ¼ P/h3iiþ1=2 þ bDiþ1=2.
Concerning the computation of the VIA moment, we integrate (1) over [xi�1/2,xi+1/2], yielding the following

conservative formulation to update the VIA,
oV /i

ot
¼ � 1

Dxi
ðFiþ1

2
ðu;/Þ �Fi�1

2
ðu;/ÞÞ; ð18Þ
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where Fðu;/Þ denotes the numerical flux consistent to (u/). Rather than the exact integration of the interpo-
lation function used in the original CIP-CSL schemes [20,37,28,29], an average numerical flux is evaluated
from the PVs at all substeps of the Runge–Kutta integration computed in (17).

With PVs computed at each substep by the third-order TVD Runge–Kutta method (15), we approximate
the numerical flux by
Fiþ1
2
ðu;/Þ � cFiþ1

2
¼

F uðX 0Þ; P/h0i
iþ1

2

� �
þF uðX 0Þ; P/h1i

iþ1
2

� �
þ 4F uðX 0Þ; P/h2i

iþ1
2

� �
6

: ð19Þ
The VIA moment is then predicted by
V /nþ1
i ¼ V /n

i �
Dt
Dxi
ðcFiþ1

2
�cFi�1

2
Þ: ð20Þ
Note that we make use of the PVs sampled at the Runge–Kutta substeps along the trajectory for the compu-
tation of numerical flux in the present schemes, rather than the exact integral of the interpolation function for
the numerical flux which is employed in the original CIP-CSL schemes. This provides us great convenience
and efficiency, especially in multi-dimensional cases. Moreover, the following facts indicate that the third-or-
der Runge–Kutta method with the CIP-CSL2 reconstruction gives a third-order accuracy to both PV and
VIA.

For simplicity, we consider the linear scalar equation
Lð/Þ � o/
ot
þ oðu/Þ

ox
¼ 0; ð21Þ
where we assume u > 0 is constant over the computational domain with a uniform grid spacing.

Proposition 1. Let l = 3 in (17) and use the CIP-CSL2 reconstruction, the semi-Lagrangian solution of the point

value at cell boundary has third-order accuracy.

Proof. From (17) with l = 3, we update the PV at xi+1/2 by
P/nþ1
iþ1

2
¼ UiðX 3Þ ¼ Uiðxiþ1=2 � uDtÞ ¼ 6rð1� rÞV /n

i þ ð1� 4rþ 3r2ÞP/n
iþ1

2
� rð2� 3rÞP/n

i�1
2
; ð22Þ
where r = uDt/Dx is the Courant number, and the CIP-CSL2 reconstruction (4) has been used.
The VIA V /i is approximated by third-order integration V / � P /i�1=2 þ P /i�1=2 þ 4/i

� �
=6 over cell i,

where /i means the point value at cell center. Substituting above approximated VIA into (22), we express
P /nþ1

iþ1
2

in terms of the PVs at the nth step as
P/nþ1
iþ1

2
¼ ð1� 3rþ 2r2ÞP/n

iþ1
2
� rð1� 2rÞP/n

i�1
2
þ 4rð1� rÞ/n

i : ð23Þ
Re-numbering the subscript by j ” i + 1/2, j � 1 ” i and j � 2 ” i � 1/2, we recast (23) into
LhðP/Þ � P /nþ1
j � ð1� 3rþ 2r2ÞP/n

j þ rð1� 2rÞP /n
j�1 � 4rð1� rÞ/n

j�2 ¼ 0: ð24Þ
A Taylor expansion straightforwardly shows that
Lð/Þ �LhðP/Þ ¼ �
rð1� 3rþ 2r2ÞDx3

12

o3/
ox3
¼ OðDx3;Dt3Þ: ð25Þ
It states the third-order accuracy of the numerical scheme. h

Proposition 2. Let l = 3 and use the CIP-CSL2 reconstruction, the numerical solution to the VIA computed by

(19) and (20) has third-order accuracy.

Proof. From (17), (19) and (20), the finite volume equation to update the VIA on the ith cell is
written as
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V /nþ1
i ¼ V /n

i � r
P/h0i

iþ1
2

þ P/h1i
iþ1

2

þ 4P/h2i
iþ1

2

� �
� P/h0i

i�1
2

þ P/h1i
i�1

2

þ 4P/h2i
i�1

2

� �
6

;

¼ V /n
i þ r �P/n

iþ1
2
þ P/n

i�1
2

� �
þ r2 �3V /n

i þ 3V /n
i�1 þ 2P /n

iþ1
2
� P/n

i�1
2
� P/n

i�3
2

� �
þ r3 2V /n

i � 2V /n
i�1 � P/n

iþ1
2
þ P/n

i�3
2

� �
:

ð26Þ
On the other hand, considering the Taylor expansion of /(x, t) about time t and (21), we have
/ðx; t þ DtÞ ¼ /ðx; tÞ þ Dt
o/
ot
þ Dt2

2!

o2/
ot2
þ Dt3

3!

o3/
ot3
þ Dt4

4!

o4/
ot4
þ � � �

¼ /ðx; tÞ � uDt
o/
ox
þ u2 Dt2

2!

o
2/

ox2
� u3 Dx3

3!

o
3/

ox3
þ u4 Dt4

4!

o
4/

ox4
þ � � �

ð27Þ
We integrate (27) over [xi�1/2,xi+1/2], and truncate the expansion at an order of OðDx3;Dt3Þ
V /nþ1
i ¼ V /n

i � u
Dt
Dx

/iþ1
2
�/i�1

2

� �
þ u2 Dt2

2!Dx
o/
ox

����
iþ1

2

� o/
ox

����
i�1

2

 !
� u3 Dt3

3!Dx
o2/
ox2

����
iþ1

2

� o2/
ox2

����
i�1

2

 !
þOðDx3;Dt3Þ:

ð28Þ
Considering the upwind direction for u > 0, one gets the followings with the CIP-CSL2 reconstruction (4),
/iþ1
2
� Uiðxiþ1

2
Þ; o/

ox

����
iþ1

2

� oUi

ox
ðxiþ1

2
Þ; o

2/
ox2

����
iþ1

2

� o
2Ui

ox2
ðxiþ1

2
Þ;

/i�1
2
� Ui�1ðxi�1

2
Þ; o/

ox

����
i�1

2

� oUi�1

ox
ðxi�1

2
Þ; o2/

ox2

����
i�1

2

� o2Ui�1

ox2
ðxi�1

2
Þ:

ð29Þ
Expressing the interpolation function in the above relations explicitly using (4) and substituting the resulting
expressions into (28), we immediately know that all the terms in (26) are identical to the leading terms in (28).
This means that the finite volume formula (18) with (19) and (20) produces a truncation error of third-
order. h

We should note that although the above conclusions are proved for constant velocity, they also applies to
the case of variable velocity because the third-order Runge–Kutta method for the ordinary differential equa-
tion of the trajectory has a third-order accuracy only if the velocity is continuous.

For the convenience of further discussions and distinguishing the presented schemes from the existing ones,
we refer to the third-order scheme with the slope parameter di approximated by (9) as CM2-FVM-SL3, a
shorting of CIP/multi-moment finite volume method based on semi-Lagrangian approach of third-order, and
the fourth-order scheme as CM2-FVM-SL4, where di is computed by (10).

2.4. Numerical examples

We computed some numerical examples of the scalar conservation laws to validate the proposed method
for both linear and nonlinear cases. All experiments are computed with uniform grid and CFL number is
about 0.4 except for the grid refinement tests. However, it is noted that the presented schemes are computa-
tionally stable even with a larger CFL number owing to the semi-Lagrangian nature.

We first solve the linear advection equation with constant velocity u = 1,
o/
ot
þ o/

ox
¼ 0: ð30Þ
Example 2.1. In order to evaluate the convergence rates of the schemes, we conducted grid-refinement
experiments. A smooth distribution defined by
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/ðx; 0Þ ¼ sinðpxÞ; ð0 6 x 6 2Þ; ð31Þ

was transported by the one-dimensional advection equation with periodic boundary conditions. The number
of mesh elements is doubly increased from 10 to 320 and the CFL number is fixed as 0.1.

The numerical errors measured by two kinds of norms defined as L1 ¼
PI

i¼1j/
e
i � /n

i j=I and
L1 ¼ max16i6Ið/e

i � /n
i Þ norms, where /e is the exact solution. The convergence rates of the PV and VIA

are shown in Tables 1 and 2. In this example, the slope parameter d was computed by (9) and (10) respectively
in CM2-FVM-SL3 and CM2-FVM-SL4 without limiting.

It is observed that the CM2-FVM-SL3 has a third-order accuracy as the propositions suggest, while the
CM2-FVM-SL4 has a fourth-order accuracy.

Example 2.2. As an example of capturing contact discontinuity, a square pulse was also computed. The
square-pulse is given as
/ðx; 0Þ ¼
1 for 0:8 6 x 6 1:2;

0 otherwise;

�
ð0 6 x 6 2Þ: ð32Þ
The numerical results using 100 mesh cells with M2 = 0, 150 and 300 in (12) at t = 4 (2-period) are displayed in
Figs. 2 and 3. Both CM2-FVM-SL3 and CM2-FVM-SL4 have produced symmetrical numerical solutions
without numerical oscillation if M2 = 0. However, there are significant differences between the two when
the TVB bound M2 is increased. The second-order formula (9) gives a small slope at the cell center, and then
1
ical errors and convergence rate of the CM2-FVM-SL3 for the linear scalar equation /t + /x = 0

nt Mesh size L1 error L1 order L1 error L1 order

10 1.05e � 2 – 1.71e � 2 –
20 1.37e � 3 2.94 2.20e � 3 2.96
40 1.75e � 4 2.97 2.79e � 4 2.98
80 2.21e � 5 2.99 3.50e � 5 2.99

160 2.77e � 6 3.00 4.38e � 6 3.00
320 3.48e � 7 2.99 5.47e � 7 3.00

10 1.07e � 2 – 1.65e � 2 –
20 1.39e � 3 2.94 2.17e � 3 2.93
40 1.75e � 4 2.99 2.75e � 4 2.98
80 2.20e � 5 2.99 3.45e � 5 2.99

160 2.75e � 6 3.00 4.32e � 6 3.00
320 3.44e � 7 3.00 5.41e � 7 3.00

2
ical errors and convergence rate of the CM2-FVM-SL4 for the linear scalar equation /t + /x = 0

nt Mesh size L1 error L1 order L1 error L1 order

10 5.98e � 4 – 8.81e � 4 –
20 3.43e � 5 4.12 5.22e � 5 4.08
40 2.06e � 6 4.06 3.19e � 6 4.03
80 1.27e � 7 4.02 1.98e � 7 4.01

160 7.91e � 9 4.01 1.24e � 8 4.00
320 4.94e � 10 4.00 7.74e � 10 4.00

10 5.73e � 4 – 8.85e � 4 –
20 3.29e � 5 4.12 5.15e � 5 4.10
40 2.01e � 6 4.03 3.15e � 6 4.03
80 1.25e � 7 4.01 1.96e � 7 4.01

160 7.80e � 9 4.00 1.22e � 8 4.01
320 4.87e � 10 4.00 7.66e � 10 3.99
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Fig. 2. Numerical results of CM2-FVM-SL3 for Example 2.2 at t = 4.0 (2-period): (a) M2 = 0; (b) M2 = 150; and (c) M2 = 300.
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Fig. 3. Same as Fig. 2, but for CM2-FVM-SL4: (a) M2 = 0; (b) M2 = 150; and (c) M2 = 300.
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turns off the limiting. The fourth-order one (10) results in a much larger gradient that activates the slope lim-
iter for all cases. The TVB limiter is apparently more effective for high-order reconstruction.

Example 2.3. In this example, we tested the schemes in capturing extrema of various smoothness [7]. The ini-
tial profile is given as
/ðxþ 0:5; 0Þ ¼
�x sin 3

2
px2

� �
for � 1 6 x 6 � 1

3
;

j sinð2pxÞj for j 1
3
j 6 x;

2x� 1� sinð3pxÞ=6 otherwise:

8><>: ð�1 6 x 6 1Þ: ð33Þ
The initial profile was numerical transported up to t = 8 (4-period) using 100 cells by both CM2-FVM-SL3
and CM2-FVM-SL4 with M2 = 0, 150 and 300. The numerical solutions are shown in Fig. 4 and 5. As ex-
pected, the extrema are better resolved by both schemes when a larger M2 is used. The fourth-order scheme
is overall superior to the third-order one.

We computed the inviscid Burgers equation as an example of scalar nonlinear conservation laws:
ou
ot
þ

o 1
2
u2

� �
ox

¼ 0: ð34Þ
The PV is solved by the advection form
du
dt
¼ ou

ot
þ aðuÞ ou

ox
¼ 0; ð35Þ
where a(u) = u is the characteristics velocity.
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Fig. 4. Numerical results of CM2-FVM-SL3 for Example 2.3 at t = 8.0 (4-period): (a) M2 = 0; (b) M2 = 150; and (c) M2 = 300.
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Fig. 5. Same as Fig. 4, but for CM2-FVM-SL4: (a) M2 = 0; (b) M2 = 150; and (c) M2 = 300.
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The trajectory passing through cell boundary is solved with a characteristic velocity evaluated by
aðuÞiþ1
2
¼

sgnðmaxÞ �max jP uiþ1
2
j; jV ui�1j; jV uiþ1j

� �
for discontinuity;

P uiþ1
2

otherwise:

8<: ð36Þ
Our numerical experiments show that (36) not only avoids effectively the ‘‘entropy problem’’ at sonic points
but also works well in suppressing numerical oscillations.

Same as in the linear cases, the numerical flux for updating VIA is obtained by
cFiþ1
2
¼

1
2

P uh0i
iþ1

2

� �2

þ 1
2

P uh1i
iþ1

2

� �2

þ 2 P uh2i
iþ1

2

� �2

6
; ð37Þ
and the VIAs are updated by
V unþ1
i ¼ V /n

i �
Dt
Dxi

cFiþ1
2
�cFi�1

2

� �
: ð38Þ
Example 2.4. We evaluated the convergence rates of the schemes for the nonlinear Burgers equation with the
numerical test in [23,12]. The initial condition is given as
uðx; 0Þ ¼ 0:5þ sinðpxÞ; ð0 6 x 6 2Þ: ð39Þ



Table 3
Numerical errors and convergence rate for the nonlinear scalar equation ut + (u2/2)x = 0

Scheme Mesh size L1 error L1 order L1 error L1 order

CM2-FVM-SL3 10 7.94e � 3 – 2.64e � 2 –
20 7.31e � 4 3.44 4.05e � 3 2.70
40 9.22e � 5 2.99 5.24e � 4 2.95
80 1.14e � 5 3.02 5.94e � 5 3.14

160 1.07e � 6 3.41 4.87e � 6 3.61
320 9.98e � 8 3.42 4.51e � 7 3.43

CM2-FVM-SL4 10 3.45e � 3 – 1.14e � 2 –
20 1.83e � 4 4.00 1.04e � 3 3.45
40 1.61e � 5 4.00 9.43e � 5 3.46
80 8.03e � 7 4.60 5.08e � 6 4.21

160 5.01e � 8 4.28 3.33e � 7 3.93
320 2.31e � 9 4.09 1.64e � 8 4.34
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Fig. 6. Numerical results of Example 2.4 at t = 1.5/p: (a) CM2-FVM-SL3 and (b) CM2-FVM-SL4.

860 S. Ii, F. Xiao / Journal of Computational Physics 222 (2007) 849–871
Due to the nonlinearity, the discontinuous solution (shock wave) is fully developed around t = 2/p. We solved
the Burgers equation up to t = 0.5/p when the solution is still smooth. The numerical errors measured in both
L1 and L1 norms and the convergence rates of the CM2-FVM-SL3 and CM2-FVM-SL4 for VIA are shown in
Table 3. The expected convergence rates of both schemes are verified again for the nonlinear case.

Moreover, we continued the calculation with 80 mesh cells until t = 1.5/p and obtained a well developed
shock wave. The numerical solutions of the CM2-FVM-SL3 and CM2-FVM-SL4 are shown in Fig. 6. The
shock discontinuity is well resolved by both schemes without numerical oscillations. The TVB parameter in
this test is set as M = 7/Dx. It reflects the fact that the numerical derivatives are grid-spacing dependent. The
parameter M is pre-determined in a manner dependent on the grid resolution in this test. It is observed at least
for this test that M = 7/Dx does not trigger the minmod limiter, otherwise a lower convergence rate would be
resulted.
3. The Euler conservation laws

In this section, we implement the CIP/MM FVM to the inviscid Euler conservation laws. We make use of
the strict hyperbolicity of the Euler equations, so the numerical procedure can be extended to system of equa-
tions by computing the semi-Lagrangian solutions in terms of the characteristics. The numerical fluxes, which
are required in the computation of the VIAs of the conservative variables, are approximated by using the semi-
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Lagrangian solutions of the characteristic variables. In the computation of the Euler equations, we use the
third-order TVD Runge–Kutta method for time integration again.

3.1. The one-dimensional Euler equations

The conservative form of the one-dimensional Euler equations, which describe the dynamics of inviscid gas,
are given as follows:
oU

ot
þ oF

ox
¼ 0; U ¼

q

qu

e

264
375; F ¼

qu

qu2 þ p

uðeþ pÞ

264
375; ð40Þ
where U is the vector of conservative variables and F is the vector of inviscid fluxes. Denoted by q is
the density, u the velocity, e the total energy and p the pressure that is obtained by the equation of state
for the perfect gas p = (e � qu2/2)(c � 1). The ratio of the specific heats c is specified as 1.4 in this
paper.

From (40), we can obtain the linearized Euler equations about the primitive variables W by freezing the
jacobian matrix A,
oW

ot
þ A

oW

ox
¼ 0; W ¼

q

u

p

264
375; A ¼

u q 0

0 u 1
q

0 qc2 u

264
375: ð41Þ
Considering the hyperbolicity, one can consider the following decomposition to diagonalize A, i.e.
A ¼ RKL;
where K is the diagonal matrix of the eigenvalues, whose non-zero diagonal elements are the characteristic
speeds denoted by k1 = u, k2 = u + c and k3 = u � c, respectively. L is the matrix of the left eigenvectors (in-
verse matrix of right eigenvectors R, i.e. L = R�1), and c ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the sound speed.

Eq. (41) is then recast into the characteristic form,
L
oW

ot
þ KL

oW

ox
¼ 0; K ¼

u 0 0

0 uþ c 0

0 0 u� c

264
375; L ¼

1 0 � 1
c2

0 1 1
qc

0 1 � 1
qc

264
375: ð42Þ
We, from (42), have a decoupled system for the characteristic variables (or the Riemann invariants) as,
dq� 1

c2
dp ¼ 0; on C1ðX 0Þ :

dx
dt
¼ k1 ¼ u; xðt ¼ t0Þ ¼ X 0; ð43aÞ

duþ 1

qc
dp ¼ 0; on C2ðX 0Þ :

dx
dt
¼ k2 ¼ uþ c; xðt ¼ t0Þ ¼ X 0; ð43bÞ

du� 1

qc
dp ¼ 0; on C3ðX 0Þ :

dx
dt
¼ k3 ¼ u� c; xðt ¼ t0Þ ¼ X 0: ð43cÞ
So, the primitive variables at X0 can be found by the relations below,
qðX 0Þ � qðX ðC1ÞÞ �
1

c2
fpðX 0Þ � pðX ðC1ÞÞg ¼ 0; ð44aÞ

uðX 0Þ � uðX ðC2ÞÞ þ
1

qc
fpðX 0Þ � pðX ðC2ÞÞg ¼ 0; ð44bÞ

uðX 0Þ � uðX ðC3ÞÞ �
1

qc
fpðX 0Þ � pðX ðC3ÞÞg ¼ 0; ð44cÞ
where X ðC1Þ, X ðC2Þ and X ðC3Þ indicate the points on the characteristic curves C1, C2 and C3,
respectively.
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3.2. The multi-moment discretization

Two types of moments, i.e. the PV at the cell boundary and the VIA over the cell volume, are defined and
treated as the predicted variables for the primitive variables W. The PVs and VIAs of W, shown in Fig. 7, are
defined as
P Wiþ1
2
¼W xiþ1

2
; t

� �
; ð45Þ
and
V Wi ¼
1

Dxi

Z x
iþ1

2

x
i�1

2

Wðx; tÞdx: ð46Þ
The departure points X ðCmÞ, m = 1,2,3, of cell boundary x = xi+1/2 are obtained by solving the trajectory
equations along the three characteristic curves,
dX
dt ¼ �kmðX ; tÞ;
X ðt ¼ t0Þ ¼ X 0 ¼ xiþ1

2
;

(
m ¼ 1; 2; 3: ð47Þ
We solve (47) using the third-order TVD Runge–Kutta method, which reads
X 1ðCmÞ ¼ X 0 � kmðX 0; t0ÞDt;

X 2ðCmÞ ¼ 3
4
X 0 þ 1

4
X 1ðCmÞ � 1

4
kmðX 0; t1ÞDt;

X 3ðCmÞ ¼ 1
3
X 0 þ 2

3
X 2ðCmÞ � 2

3
kmðX 0; t2ÞDt;

8><>: for m ¼ 1; 2; 3; ð48Þ
where Cm denotes the mth characteristic curve, defined by (47).
Consequently, by solving linear-system (44a)–(44c) for primitive variables (q, u, p) along characteristic

curves, we have
P phli
iþ1

2

¼ 1

2
PðX lðC2ÞÞ þPðX lðC3ÞÞ þ Pqhl�1i

iþ1
2

P chl�1i
iþ1

2

fUðX lðC2ÞÞ �UðX lðC3ÞÞg
n o

; ð49aÞ

P uhli
iþ1

2

¼ 1

2
UðX lðC2ÞÞ þUðX lðC3ÞÞ þ

1
Pqhl�1i

iþ1
2

P chl�1i
iþ1

2

fPðX lðC2ÞÞ �PðX lðC3ÞÞg

8<:
9=;; ð49bÞ

Pqhli
iþ1

2

¼ RðX lðC1ÞÞ þ
1

ðP chl�1i
iþ1

2

Þ2
fP phli

iþ1
2

�PðX lðC1ÞÞg; ð49cÞ
where RðxÞ, UðxÞ and PðxÞ represent the CIP-CSL reconstructions for q, u and p, respectively. Thus,
RðX lðCmÞÞ, UðX lðCmÞÞ and PðX lðCmÞÞ denote the semi-Lagrangian solutions along the trajectories defined
by characteristic curve Cm for the Runge–Kutta substeps (l = 1,2,3).

The characteristic velocities km(X0, tl) at each Runge–Kutta substep (l = 0,1,2) are retrieved from the PVs
of the primitive variables computed by (49a)–(49c), and then used in (48).
Fig. 7. The locations of the moments for the one-dimensional Euler equations on cell i.



S. Ii, F. Xiao / Journal of Computational Physics 222 (2007) 849–871 863
The PVs of the primitive variables at the cell boundary x = xi+1/2 of step n + 1 are found directly by
Pqnþ1
iþ1

2
¼ Pqh3i

iþ1
2

; ð50Þ
P unþ1

iþ1
2
¼ P uh3i

iþ1
2

; ð51Þ
Pqnþ1

iþ1
2
¼ Pqh3i

iþ1
2

: ð52Þ
Analogous to the case of the scalar conservation law, the VIAs of the conservative variables U on cell i are
updated by integrating (40) over [xi�1/2, xi+1/2], which results in a finite volume formulation,
V Unþ1
i ¼ V Un

i �
Dt
Dxi

cFiþ1
2
� cFi�1

2

� �
; ð53Þ
where the numerical fluxes computed by using the PVs of the primitive variables at the substeps of the Runge–
Kutta integration scheme (15), i.e.
cFiþ1
2
¼

F
h0i
iþ1

2

P W
h0i
iþ1

2

� �
þF

h1i
iþ1

2

P W
h1i
iþ1

2

� �
þ 4F

h2i
iþ1

2

P W
h2i
iþ1

2

� �
6

: ð54Þ
In the whole numerical procedure, we assume that the relations of the continuous physical variables apply also
to the PVs and VIAs, such as,
V u ¼ V qu=V q; V p ¼ ðV e� V qV u2=2Þðc� 1Þ; and P e ¼ P p=ðc� 1Þ þ PqP u2=2:
4. Numerical examples for the Euler equations

In this section, we report some benchmark tests that have been widely used to evaluate numerical schemes
for the one-dimensional Euler equations. We denote the maximum CFL number in terms of the largest char-
acteristic velocity over all computational time and mesh cells as CFLmax. Our numerical experiments show
that the present method is computational stable for the Euler equations only if CFLmax is less than 0.8. In
all tests in this paper, the time step is chosen so that CFLmax is about 0.4.

Numerical tests were conducted with both the third-order scheme (CM2-FVM-SL3) and the fourth-order
scheme (CM2-FVM-SL4) as mentioned before. The TVB slope limiting was implemented and the differences in
the numerical results from different limiting parameters are shown.
4.1. Advection of density perturbation [12]

In order to evaluate the convergence rate of the proposed schemes, we computed the Euler equations with
gradually refined grids. The initial condition [12] for density, velocity and pressure are specified, respectively,
as q0 = 1 + 0.2sin (px), u0 = 1 p0 = 1. The computational domain is over [0,2] with periodic boundary condi-
tions. These configuration produces an advection transport of the initial density perturbations. The exact solu-
tion of density is found as q(x, t) = 1 + 0.2sin (p(x � t)), u(x, t) = p(x, t) = 1.

The grid resolutions were doubly refined from 10 to 320. The L1 and L1 errors in the numerical results of
density at t = 2 and the corresponding convergence rates are summarized in Table 4. Same as in the pure
advection cases, we have obtained the expected orders of accuracy for the Euler equations with variable char-
acteristic velocities. Furthermore, we can find that the present schemes produce numerical results with accu-
racies competitive to those of the HWENO scheme in [12].
4.2. Sod’s problem [19]

Its perhaps the most widely used benchmark test for one-dimensional Euler equations. A 1D shock tube
problem is configured with a diaphragm that initially separates the compressible ideal gas in the two states
as follows:



Table 4
Numerical errors and convergence rate of the density q for the Euler Eq. (40) with initial conditions q0 = 1 + 0.2sin(px) and u0 = p0 = 1

Scheme Mesh size L1 error L1 order L1 error L1 order

CM2-FVM-SL3 10 2.13e � 3 – 3.30e � 3 –
20 2.77e � 4 2.94 4.44e � 4 2.89
40 3.51e � 5 2.98 5.50e � 5 3.01
80 4.40e � 6 3.00 6.91e � 6 2.99

160 5.51e � 7 3.00 8.65e � 7 3.00
320 6.89e � 8 3.00 1.08e � 7 3.00

CM2-FVM-SL4 10 1.15e � 4 – 1.77e � 4 –
20 6.58e � 6 4.13 1.03e � 5 4.10
40 4.02e � 5 4.03 6.31e � 7 4.03
80 2.50e � 8 4.01 3.92e � 8 4.01

160 1.56e � 9 4.00 2.45e � 9 4.00
320 9.75e � 11 4.00 1.53e � 10 4.00

 0

0.2

0.4

0.6

0.8

 1

 0

 0

0.2

0.4

0.6

0.8

 1

 0

864 S. Ii, F. Xiao / Journal of Computational Physics 222 (2007) 849–871
ðq0; u0; p0Þ ¼
ð1; 0; 1Þ for 0 6 x 6 0:5;

ð0:125; 0; 0:1Þ otherwise;

�
ð0 6 x 6 1Þ: ð55Þ
We carried out the calculations on 100 mesh cells until t = 0.2. The numerical results of CM2-FVM-SL3 and
CM2-FVM-SL4 are shown in Figs. 8 and 9. The shock front and contact discontinuity are captured with cor-
rect locations and satisfactory sharpness. In this numerical test, we specified M2 = 0 in (12). The numerical
results of both CM2-FVM-SL3 and CM2-FVM-SL4 look competitive to those of the DG method in [3], where
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Fig. 8. Numerical results of CM2-FVM-SL3 for Sod’s problem at t = 0.2: (a) density; (b) velocity; and (c) pressure.
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Fig. 9. Numerical results of CM2-FVM-SL4 for Sod’s problem at t = 0.2: (a) density; (b) velocity; and (c) pressure.
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a similar TVB limiting was also used to control the numerical oscillations, and tuning M2 makes significant
difference in the computational outcomes.

4.3. Lax’s problem [10]

Another numerical test with stronger shock and contact discontinuity, namely Lax’s problem [10], is char-
acterized by the following initial conditions,
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ðq0; u0; p0Þ ¼
ð0:445; 0:698; 3:528Þ for 0 6 x 6 0:5;

ð0:5; 0; 0:571Þ otherwise;

�
ð0 6 x 6 1Þ: ð56Þ
We used 100 mesh cells. The numerical results at t = 0.13 are shown in Figs. 10 and 11. Again, the numerical
solutions of shock, contact discontinuity and expansion fan are obtained with a satisfactory resolution, even
compared to those from the DG method reported in [3].

4.4. Extremely strong shock wave [32]

In this test, strong shock wave is generated by an extremely high pressure in the initial conditions,
ðq0; u0; p0Þ ¼
ð1; 0; 1010Þ for 0 6 x 6 0:5;

ð0:125; 0; 0:1Þ otherwise;

(
ð0 6 x 6 1Þ: ð57Þ
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Fig. 10. Numerical results of CM2-FVM-SL3 for Lax’s problem at t = 0.13: (a) density; (b) velocity; and (c) pressure.
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Fig. 11. Numerical results of CM2-FVM-SL4 for Lax’s problem at t = 0.13: (a) density; (b) velocity; and (c) pressure.
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In this example, the characteristic velocities km(m = 1,2,3) are very large. We compute the characteristic veloc-
ities at each cell boundary by a weighted averaging between the values in terms of the PVs (Pkm) and the values
evaluated from the Roe’s average [13] (Roekm) based on the VIAs of the two neighboring cells as
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k̂m ¼ bPkm þ ð1� bÞRoekm: ð58Þ

In this example, the weight parameter is b = 0.5.

We carried out the calculation over 200 mesh cells. The numerical results at t = 2.5 · 10�6 are shown in
Figs. 12 and 13. Due to the numerical conservativeness of the VIAs of the conservative variables, the shock
with large jumps in both velocity and pressure were computed with correct locations. The numerical solutions
look very satisfactory in regard to numerical diffusion and spurious oscillations.

4.5. Stationary contact discontinuity

A stationary contact discontinuity was examined with initial conditions as follows:
ðq0; u0; p0Þ ¼
ð1:4; 0; 1Þ for 0 6 x 6 0:5;

ð1; 0; 1Þ otherwise;

�
ð0 6 x 6 1Þ: ð59Þ
The discontinuity in density remains stationary, but poses a challenging problem for some existing high res-
olution schemes, for example, a smeared discontinuity is produced by the flux vector splitting method [22].
Shown in Fig. 14, numerical solutions identical to the exact ones have been obtained by both CM2-FVM-
SL3 and CM2-FVM-SL4.
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. Numerical results of CM2-FVM-SL3 for extremely strong shock wave at t = 2.5 · 10�6: (a) density; (b) velocity; and (c) pressure.
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. Numerical results of CM2-FVM-SL4 for extremely strong shock wave at t = 2.5 · 10�6: (a) density; (b) velocity; and (c) pressure.
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Fig. 14. Numerical results of density for stationary contact discontinuity at t = 2.0: (a) CM2-FVM-SL3 and (b) CM2-FVM-SL4.
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4.6. Shock–turbulence interaction [18]

As in [18], interactions between a shock wave and wavy perturbations were simulated with the following
initial conditions,
 0
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Fig. 15
compu
(c) M2
ðq0; u0; p0Þ ¼
ð3:857148; 2:629369; 10:333333Þ for 0 6 x 6 1;

ð1þ 0:2 sinð5x� 5Þ; 0; 1Þ otherwise;

�
ð0 6 x 6 10Þ: ð60Þ
In this problem, the shock moves to the right and interacts with a wave chain. Both shock and smooth struc-
tures are included in the solution. So, the numerical scheme needs to be not only capable of capturing shock
wave but also accurate enough to resolve the flow structure in smooth region. The numerical results of CM2-
FVM-SL3 and CM2-FVM-SL4 with 200 mesh cells at t = 1.8 are shown in Figs. 15 and 16, while the results
with 400 mesh cells are shown in Figs. 17 and 18. In this example, we have computed with different values for
M2 of the TVB limiter (12). As expected, the schemes give better resolved structure when a less restrictive lim-
iting is used. Solutions are improved as M2 is increased. It is observed that the CM2-FVM-SL4 is more accu-
rate than the CM2-FVM-SL3 for the smooth perturbation region. In fact, the CM2-FVM-SL4 with M2 = 200
perfectly captures the smooth waves even only 200 mesh cells are used.
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. Numerical results of CM2-FVM-SL3 for shock–turbulence interaction at t = 1.8. Mesh number is 200. The ‘exact’ solution is
ted by MUSCL method using the Roe approximate Riemann solver [13] with 2000 mesh cells: (a) M2 = 0; (b) M2 = 100; and
= 200.
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Fig. 16. Numerical results of CM2-FVM-SL4 for shock–turbulence interaction at t = 1.8. Mesh number is 200: (a) M2 = 0; (b) M2 = 100;
and (c) M2 = 200.
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Fig. 17. Same as Fig. 15, but the mesh number is 400: (a) M2 = 0; (b) M2 = 100; and (c) M2 = 200.
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Fig. 18. Same as Fig. 16, but the mesh number is 400: (a) M2 = 0; (b) M2 = 100; and (c) M2 = 200.
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4.7. Two interacting blast waves [27]

Finally, we computed two interacting blast waves suggested in [27]. The initial conditions were given by
ðq0; u0; p0Þ ¼
ð1; 0; 1000Þ for 0 6 x 6 0:1;

ð1; 0; 0:01Þ for 0:1 6 x 6 0:9;

ð1; 0; 100Þ otherwise;

8><>: ð0 6 x 6 1Þ: ð61Þ
 0  2  4  6  8  10Exact
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Fig. 19. Numerical results for two interacting blast waves at t = 0.038. The ‘exact’ solutions are computed by the Roe-MUSCL finite
volume method with 10000 mesh cells: (a) CM2-FVM-SL3 and (b) CM2-FVM-SL4.
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Reflecting boundary conditions are imposed on the two ends of computational domain. Two blast waves are
generated by the initial jumps and interact each other violently. Strong shocks, contact discontinuities and
expansion fans are then created and cause further interactions. The number of the mesh cells is 400. The char-
acteristic velocities at each cell boundary are evaluated by a weighted averaging between the PVs and the
Roe’s averages with (58).

The numerical results of CM2-FVM-SL3 and CM2-FVM-SL4 with M2 = 0 at t = 0.038 are shown in
Fig. 19. The present methods give numerical solutions with an accuracy competitive to other existing schemes.
In this test, CM2-FVM-SL4 captured the left contact discontinuity with a higher resolution than CM2-FVM-
SL3. We also find that parameter M2 in the TVB limiter does not make much difference in the numerical
results for this case.

5. Discussions and conclusions

In this paper, we have implemented the CIP/MM FVM (CM2-FVM for short) to the Euler conservation
laws by using characteristic theory. In the two resulting schemes, namely CM2-FVM-SL3 and CM2-FVM-
SL4, the semi-Lagrangian updating is computed in terms of the characteristic field of the hyperbolic system.
The PVs, which are referred to as the non-conservative moments, are updated by semi-Lagrangian solutions
along the characteristic curves. The VIAs of the conservative variables, which are referred to as the conserva-
tive moments, are solved by finite volume formulations of flux form. The numerical fluxes are evaluated by
sampling the corresponding PVs along the characteristic curves. The Runge–Kutta time integration scheme
was used to solve the trajectory equations.

The presented method has been examined with typical benchmark tests and compared with other high-
order schemes, such as DG and (H)WENO schemes. The results of all numerical tests in this paper are com-
petitive. The numerical formulation presented in this paper applies also to other hyperbolic systems, and
multi-dimensional implementations on both structured and unstructured grids have also been carried out
and will be reported in a separate paper.

The CIP/multi-moment (CM2) concept provides a general base on which a broad spectrum of numerical
schemes can be constructed. The moments used in this paper are straightforwardly defined as the point-value
and the integrated average of a physical field. Using at least two kinds of moments as the dependent variables
in the numerical formulation, a CM2 scheme is apparently different from the conventional high resolution
methods of either finite difference or finite volume type, where only single moment is used. The CM2 mean-
while is different from the DG formulation though multi-moments are also used in the DG method. The
CM2 formulation is more flexible and allows more existing numerical techniques being implemented in its
framework. We have used a semi-Lagrangian approach to update the PVs in the present study, but by no
means limit ourselves to this formulation. Eulerian time integration based on CM2-FVM will be also reported
soon.
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